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SUMMARY 

An experimental investigation i s  car r ied  out to determine the 
effect of an axially symmetric initial imperfection on the buckling 
load of a circular  cylindrical shell under axial compression loading. 
The imperfection studied has  the form of a half sine wave in the length 
direction. The shells a r e  formed by a copper electroforming process.  
The theoretical buckling loads a r e  a lso computed for the imperfect 
shells, and show the same trend a s  the experimental study. 

INTRODUCTION 

The large discrepancy between the classical  buckling load of a 
c i rcular  cylindrical shell under axial compression and the experimental 
values of the buckling load is a well known but little understood phenom- 
enon (Ref. 1). Several  reasons for this discrepancy have been proposed 
but have yet to be substantiated by adequate experimental investigations. 
Donne11 and Wan (Refs. 2 and 3) have shown that imperfections in 
geometrical shape have an important effect but the exact degree of this 
effect for various types of imperfections i s  still to be determined. The 
idea of a jump of the shell f rom the prebuckled state at a load lower than 
the classical  load has been proposed by von Khrmhn and Tsien (Refs. 4 
and 5) but the exact mechanism of the jump and conditions under which it 
i s  possible a r e  a s  yet unexplored. 

The purpose of this investigation was to study the effect of a 
specific type of initial imperfection under very carefully controlled 
conditions. 
car r ied  out: 

In order  to accomplish this the following steps have been 

1. development of a method of making cylindrical shells 
which were as nearly perfect a s  possible: 



2. establishment of testing techniques in which the stress 
distribution was controllable and measurable: 

determination of the buckling s t r e s s  of these nearly 
perfect shells: 

addition of the initial imperfections to be studied and 
the determination of the buckling s t ress .  

3. 

4. 

The investigation was conducted at  the Graduate Aeronautical 
Laboratories of the California Institute of Technology under the 
sponsor ship and financial ass is tance of the National Aeronautics and 
Space Administration, Research Grant NsG-18-59. 

LIST O F  SYMBOLS 

a 
0 

a l  

A 
j 

Aij’ Bij 

amj, bijs c i j  
dmj* e mj’ f m j  

gmj* h m j  
k 

m j t  1 ’ kmj - 1 

D 

E 

F,F aF 
t -  

K 

2 

Amplitude of initial imperfection in inches 

a 0 2 h C Z Z t  

Eigenvector of buckling problem 

General  coefficients of eigenvalue problem 

Constants defined on page 17 

Constants defined on page 16 

Young’ s modulus 

S t r e s s  function 

aOR 
Et 



N N  Nx# y' xy 

n 

R 

t 

W 
0 

X 

Y 

Y 

Length of shell  

Circumferential  wave number 

Membrane s t r e s s e s  for shallow shell  equations 

Axial wave number 

Base radius of shells 

Shell thickness 

Axial deflection of shell 

Circumferential  deflection of shell  

Radial deflection of shell  

Initial distance of shell f rom flat plate 

Axial coordinate 

Circumf e r  entia1 coordinate 

Constants defined 

Kronecker delta 

on page 16 

x variation of radial  deflection 

xvariat ion of stress function 

Poisson1 s ratio 

lTXl L E 

3 



0- Applied axial s t r e s s  
0 

“Ci! 

v 4  

E t  

R 
- 1 

3(1 - V 2 )  

a2  a2 
(-2+ -2 ax ax 

EXPERIMENTAL INVESTIGATION 

Fabrication of the Tes t  Specimens 

The method of manufacturing of the cylindrical shells is  not new 

Basi- 

Fo r  a shell 

with GALCIT (see  reference 6) but a number of refinements were  
required in  order  to obtain the uniformity and accuracy desired. 
cally it consisted of plating a copper shell on a n  accurately machined 
wax mandrel  and then melting the mandrel  out of the shell. 
8 inches in diameter and 10 inches long, a s teel  cylinder 7 inches in  
diameter and 13 inches long was used as a core  (this provided a means 
of water cooling the wax to harden it). 
wax consisting of a two to one mixture of refined paraffin and Mobile 
Cerese  Wax 2305. 
sprayed with si lver paint thinned with toluene. 
and finished wax form. 
Cu(BF4)2, bath with a 15 inch diameter copper anode which was bagged 
in fine mesh  Dyne1 fabric. During plating the mandrel was rotated and 
the bath was given additional agitation by forcing air through it. Using 
voltages l e s s  than 10 volts and cur ren t  densities up to 55 amperes  per  
square foot, the plating t ime was approximately 20  minutes per  0. 001 
inches of plate. 

On this core  was cas t  a layer of 

This  was cooled, machined to the proper shape, and 
Figure 1 shows a mandrel  

The plating was done in  a Cupric Fluoborate, 

After plating, the ends of the cylinder were removed (some 
thickness increase  occurred just  at the ends), the wax was carefully 
melted out, and the residual wax and silver paint was removed with 
benzene. 
mately 0. 0045 inches. 
held to less than 3 per  cent. 
could be held to t t / 2  o r  approximately - t 0. 0025 inches. 

The shell thickness used in this s e r i e s  of t e s t s  was approxi- 

In the radial  direction, the desired radius 
The thickness variation in any shell  could be 

- 
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Tes t s  to determine the character is t ics  of the plated copper were 
ca r r i ed  out in uniaxial tension. 
of the copper that were soldered into one-eighth inch thick plates that 
were in  turn clamped into the jaws of an Instron testing machine. 
s t r ips  had length to width rat ios  greater  than 15. 
of the testing machine was used as  the measure  of s t ra in  and the load 
was read f rom the Instron load cell. A typical s t r e s s - s t r a in  curve i s  
shown in F igure  2. 

This was done by utilizing long s t r ips  

The 
The head displacement 

The value of Young's modulus used in this work was 
~ - 

6 2 13.0 x 10 lb / in  . 
A determination of Poisson 's  ratio was not attempted since i t s  

influence in the reduction of the buckling data i s  of secondary importance. 
A value of 0. 30 was used for this  purpose. 

T e st Procedure 

The buckling tes t s  were  ca r r i ed  out in the controlled displacement 
testing machine shown in Figure 3 .  
rigid in comparison with the tes t  specimen and capable of subjecting the 
t e s t  cylinder to very small increments of end displacement. 
displacement of the two end plates of the testing machine was controlled 
by three  screws. One complete turn  of the screws gave a displacement 
of 0.025 inches. The screws  could be operated independently to give the 
proper  load distribution on the shell  and then simultaneously to increase  
the load to the buckling paint. 
to preload the testing machine when mounting the tes t  specimen in the 
machine and securing it to the end plate of the testing machine. 
testing was ca r r i ed  out when the machine was in the position shown in 
Figure 3 .  
opposite end res ted  on a set  of- rol lers .  

This machine was designed to be 

The relative 

The springs shown in the figure were used 

The 

The end plate with the gear dr ive res ted  on pins and the 

The load distribution was monitored and total load was obtained 
on the load measuring cylinder shown in F igures  4 and 5. This  consisted 
of a seamless  b r a s s  cylinder which was 0. 0107 inches thick, 2. 5 inches 
long and 8. 000 inches in  diameter. Twenty-four foil-type s t ra in  gauges 
were  mounted on the cylinder equally spaced around the circumference. 
The ones on the inside were directly opposite to those on the outside. 

In o rde r  to see i f  the s t ra in  being measured in  the load measuring 
cylinder corresponded to the s t ra in  in the tes t  shell, the following t e s t  
was car r ied  out. A t e s t  cylinder was instrumented with s t ra in  gauges 
that were located at every other circumferential  position a s  those on the 
load measuring cylinder, The tes t  shell was mounted in  the load 
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measuring cylinder and both se t s  of gauges read a s  the shell was 
eccentrically loaded. 
of the measured s t ra ins  a r e  shown in Figure 6. 

Two typical readings showing the correspondence 

The tes t  cylinder was cast  with a low melting temperature alloy 
into an end ring and the other end was secured to the load measuring 
cylinder in the same manner. 
shell was measured to determine the initial imperfection. 

After this operation was completed the 

In this s e r i e s  of tes t s  the initial imperfection that was measured 
was the deviation of the generators of the shell f rom a straight line. 
This measurement was car r ied  out at nine stations around the circum- 
ference. The measurements  were made with a reluctance type pick up 
which has  a sensitivity of about 2 5  volts per inch. The noise level and 

drift were such that deflection of 10 inches could be accurately read 
without making contact with the measured surface 

-4  

The measurements were car r ied  out by mounting the sensing 
head of the pick up in a slide which traveled on a guide. The guide was 
attached to the end rings of the shell to be measured and readings were 
taken at 32 stations along the generator. 
shown in Figure 7. 

The pick up and guide a r e  

After the initial imperfections were measured, the end ring was 

After hardening of the Devcon was complete, the cylinder was 
then secured to the end plate of the testing machine with a thin layer of 
Devcon. 
ready for testing. 

The buckling tes t  was car r ied  out in the following manner. The 
cylinder was initially loaded to about one-third of the expected buckling 
load, and the circumferential  load distribution was made as uniform as  
possible by adjusting the three screws of the testing machine. 
was then gradually increased in small  increments by turning the three 
screws simultaneously. After each increase the load distribution was 
adjusted again. 
expected buckling load. After this  point the load distribution was not 
adjusted so as to prevent buckling occurring during one of the adjust- 
ments. 
monitored until buckling occurred. 

The load 

This was car r ied  out up to about two-thirds of the 

The load was increased in small  increments and the s t ra in  gauges 
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Test  Results 

Two types of axially symmetric imperfections were tested in 
this se r ies  of tests.  Thirty-seven shells with an initial deformation 
of the form AR = a. sin r x / L  were  buckled and three  with an i m  e r -  
fection of constant curvature given by AR = a 12(2x /L)  - (2x/L) 3 
were also tested. Table I shows the intendedqmperfection of the shells 
and Figures  8 through 16 give the measured imperfection on several  of 
the shells. 
equally spaced around the circumference. Table I also shows the wall 
thickness of the shell tested. 
and a length of 10 inches. 

f 

These figures show the shell generator at nine locations 

All shells had a base diameter of inches 

Table I shows that some of the shells had an initial buckling. 
This initial buckling consisted of the formation of one wave on the 
surface of the shell. 
neighborhood of the one wave without appreciably affecting the di stribu- 
tion over the r e s t  of the circumference of the shell. 
buckling, the load was increased until general collapse occurred without 
attempting to a l ter  the load distribution. General  collapse occurred in 
the same manner as for the shells that did not have an initial buckling. 

This caused the load distribution to fall off in the 

After the initial 

General  collapse consisted of a snap-through which is  character-  
In all but a few cases  the post-buckled state ist ic of this type of testing. 

consisted of 2 to 3 rows of buckles that extended completely around the 
circumference. 
I. All of the shells that had an initial imperfection amplitude greater  
than 0.010 inches buckled at one end o r  the other. This buckled state 
consisted of 2 to 3 rows of buckles that started quite close to one end 
and extended about one-third of the way up the shell. There did not 
seem to be a prefer red  end for this buckling to take place. The other 
shells with small positive imperfection, negative imperfection, and no 
intended imperfection buckled over the middle third of the shell. 
this consisted of 2 to  3 rows that extended completely around the 
circumference. 

The number of circumferential  waves i s  noted in  Table 

Again 

Table I also gives the maximum variation in load distribution 
near  buckling. 
for all the shells tested was 18. 6 per  cent. 
s t r e s s  was nearer  the maximum s t r e s s  ra ther  than the minimum. 
Figures  17 and 18 show the load distribution on two shells as the load 
was increased. 
Figures  19 and 20 give the load distribution on several  of the other 
shells at the last reading before buckling. 

The average maximum variation in load distribution 
In most cases  the average 

The initial buckling i s  easily detected in Figure 18. 
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The values of K for this s e r i e s  of tes t s  a r e  given in Table I 
and the values of u c r / u  

These a r e  compared with the Kanemitsu and Nojima value which for 
the L / R  and R / t  corresponding to these specimens gives K = 0. 17. 
The theoretical curve shown in the figure i s  the resul t  of the analysis 
given in the Appendix. The following important features can be seen: 

a r e  plotted versus  a / t  in  Figure 21. 
CP 0 

I ,  

2. 

3. 

4. 

That with proper ca re  in manufacturing and testing, 
values of the buckling s t r e s s e s  can be obtained 
which a r e  much higher than those usually found. 

That, for the displacement forms  tested, small  
departures  f rom initial straightness lower the 
buckling s t r e s s  and that the effect for inward 
displacements is  greater  than that for outward 
displacements. 

That i f  the outward displacements a r e  increased 
the value of the buckling s t r e s s  again r i s e s  until it 
reaches essentially the same value a s  that fo r  the 
initially straight cylinder. 

That the constant curvature and sine wave shape 
give essentially the same values of u for the 
la rger  values of ao/t. c r  

The drop in the value of u for 0 4 ao/t  10 and the re turn  
It to the "perfect" value for  ao/t>26zannot be explained at this  time. 

is  felt that some of the scat ter  in the experimental resu l t s  can be 
accounted for by the variation of s t r e s s  around the circumference of the 
shells. Also the lowering of the value of uCr below the c lass ica l  value 
may be in  pa r t  due to the fact that the classical  buckling load, as well 
as that computed in the Appendix, i s  calculated under the assumption 
that the shell is  f r ee  to expand in  the radial  direction during the loading 
while the edges of the tes t  cylinders were  rigidly clamped. 
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APPENDIX 

DETERMINATION O F  BUCKLING LOADS FOR A CYLINDRICAL 

SHELL WITH AN AXIAL SYMMETRIC IMPERFECTION HAVING 

THE SHAPE O F  A HALF SINE WAVE IN THE LENGTH DIRECTION 

The method of solution is  as follows: 

1. Determine the s t r e s ses  and deflections in the shell that 
occur before buckling during the loading. 

2. Consider the s t r e s s e s  and deflections occurring during 
the buckling as small perturbations about the solution 
of step 1 and l inearize the equations. 

3. Solve the eigenvalue problem obtained in  2 and deter-  
mine the smallest eigenvalue. 

The equations that will be used for the solution are the shallow 
shell equations of Marguer re  (Ref. 7). Using the coordinate system 
shown in  figure 22,  the equations are:  

3 - w  - w  w 2 0°F = E t  (w XY - w - w YY 4- 2woxywxy oxxwyy xx oyy 

D V 4 w  = F (wXX t w O X X  ) - 2 F  XY (wxy t w OXY ) t Fxx(wyy t woyy) (1b) YY 

where w i s  the initial deviation from the flat plate and F i s  the stress 
function 8efined as: 

and 

2 a2F F = etc. 
ax w x x = z '  xx 8X 
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Equation la  is  a compatibility relation and equation l b  is  the equilibrium 
equation in the direction perpendicular to the xy plane. 

In the case  of interest  he re  as shown in Figure 22: 

9 t 
Let F , and w be the solutions of the axial symmetric problem before 
the buckling occurs. Let  and w be the perturbation s t r e s s  function 
and radial  deflection occurring during the buckling. Then 

- 
(4 1 

* 
F = F* t F w = w  t w .  

* 
Substituting Equation 3 and 4 into Equation 1 and remembering that the 
state is  axially symmetric,  one obtains: 

E t  * * t a (-) TT2 s i n r )  TTX t V4F*’t w xx t v4F t Et {Tyy(wxx O L  

d w  4 *  * * IT2 RX * l  - t D v 4 w t  t a (-) sin c) - Fxx yy (wxx O L  
D - - F  4 dx 

- * H 2  TTX * -  - 1 * -  - F (wxx t ao(z) sin f;) - Fyy wxx - Fxx a - F w + 
YY = YY 

- -  
t 2 F  w - F  w 1 = o .  {- FyyWxx XY XY xx YY 

* * 
Since F and w a r e  the solutions for the pre-buckled state, the 
t e r m s  that a r e  underlined a r e  equal to zero. Also, since we a r e  only 
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interested in the bifurcation points of the solutions, the per turbaeons 
may be considered a rb i t ra r i ly  small and all nonlinear t e r m s  in F and 
w can be dropped. This leaves us  with the following set  of equations: - 

v4F = Et {- W (w 4 t a (-) 8 2  sin 
yy xx 0 L 

4 Tr2 * -  1 *, - 
t a (-1 sin E) t F ~ ~ w ~  t F= Dv4c = F yy(wxx t F ~ ~ w ~ ~ ~  L 0 L 

which is  seen to have a solution of the form: 

This solution satisfies the necessary periodic conditions in  the circum- 
ferential  direction when m is a whole number. 

Axially Symmetric Solution 

The axially symmetric solution must satisfy the following set  of 
equations: 

* *  Tr2 TrX 1 *  4 4  

dx 4 YY R xx 
F (wxx t ao(z) s i n +  - - F = 0 d w  D - -  

It will be assumed that the shell is f r ee  to expand radially at the 
ends during the loading and that the edges of the shell a r e  supported in  
a pinned manner as the shell expands radially. 

the Poisson ratio and i s  equal to  -7, where u is the applied 
s t ress .  

This expansion is due to 
Y RFo 

0 
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* 
Therefore,  the boundary conditions on w a r e  as follows: 

* 
The boundary conditions on F are given by: 

= u t  at x = 0,L F* = Nx 
0 YY 

The other conditions necessary to completely specify the problem a r e  

that u and w must  be independent of y and that v must  be 
identically zero. 

ak * 8 

Using these conditions the solution of the axially symmetr ic  
problem is given by: 

1 0 0  E t  llX u t a  - s in-  F* r -  2 uo t y 2  t -- 4 R L *  
Et D(Z) -I- uot(E) -I- 7 
R 

4 2 
The denominator D(Z) t rot(;) t Et can be written in  the following 
form: ;Iz 
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The middle t e r m  is equal to two when 

s t r e s s  and the first and las t  t e r m s  a r e  reciprocals  of each other. 
value of the las t  t e r m ,  for the shells that were tested in  the experimental 
par t  of this work, is  1832. Since the u of interest  i s  always of the 

order  of the classical  buckling s t r e s s  the denominator can be approxi- 

uo is the classical  buckling 

The 

0 

mately rewrit ten as  Et/R'. 
occur in the perturbation equations, can be written as: 

Therefore ,  the quantities of interest ,  which 

0 2  r r 4  TTX - E R a. (z) sin - 
(r - 9 

xx L '  W 

l T 2  lTX F* = - u Rt a ( - )  sin - 
O L  L '  xx 0 

a:< 
F = u t .  

YY 0 

9 
It i s  noticed that wxx occurs  in the coefficient of the perturbation 

Therefore ,  this 2 TFX equations always in  combination with a ( r / L )  sin - 
coefficient can be written as: 0 L' 

For the shells of concern here ,  R is  af the o rde r  of L and uo i s  
much l e s s  than E. Therefore,  this second term in the brackets can be 
neglected in  comparison with one. 
additional curvature  of the shell in the x-direction caused by the loading 
in comparison with the initial curvature  of the shell in  this direction. 

This  amounts to neglecting the 

Solution of the Perturbation Equations 

After the initial load is  applied, the ends of the shell are  assumed 
This implies to be pinned with respect  to the radial  direction. 
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or  since 

at x = 0 ,L  

x = 0,L 

- 
The boundary conditions that will be applied on F a r e  as follows: 

- a2  F F = --7 = O ,  at x = 0,L 
ax" 

o r  since - 
m y  F = T) sin - R 

- - 

- 
These conditions on F imply that at the ends of the shell the s t r e s s  in 
the axial direction and 7 a r e  equal to zero. 

These boundary conditions a r e  commonly used in shell stability 
analyses because of their simplicity. They can be looked upon as 
allowing the ends of the shell to warp freely in the axial direction, 
constraining the circumferential  movement, and giving a pinned support 
with respect  to the radial  direction. 

Now let  us  introduce the nondimensional quantities as follows: 

ll - L  m o m -  SrR 
- 

% = S / t J  q = T  
Et3 

(17) 

a =  a02 , a =  
t Rt 1 
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Using equations 13 and 1 7  the perturbation equations given by equation 
6 become: 

4 I /  2 q'v - 2m2 q"t m q r - a t a l m  5 sin 5 

where: q /  = 3 etc. 

The solution given he re  will be an approximate one which satisfies 
the compatibility equation exactly and the equilibrium equation approxi- 
mately. The procedure is  a s  follows. 

1. Assume a suitable form of f? which contains a 
number of a rb i t ra ry  constants and satisfies 
exactly the necessary boundary conditions. 

2. Substitute 9 into the compatibility equation and 
solve for q making sure  that r\ satisfies all the 
necessary boundary conditions. 

3. Substitute 9 and q obtained in the first two steps 
in  the equilibrium equation and determine the un- 
known constants in such a manner so a s  to 
minimize the e r r o r  by the Galerkin method. 

It is  assumed that 3 can be represented by the following se r i e s  
which satisfies the necessary boundary conditions: 

n 

9 = 2 A. sin j 6 .  
J 

j = 1  

Solving the compatibility equation for  q gives 
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t C1 sinh mE, t C2cosh  m c  t C3E, sinh m c  t C4E, cosh me, 

where C1 to C4 must  be determined in  such a manner that the 
boundary conditions a r e  satisfied. This gives the following values for 
c1 to c4. 

2 ( 2 m c o s h 1 ~ ~ ~ s i n h m r r  t m rr) - r2 rr t 

2 3 
1 

2m sinh mrr 
- 

2 c1 - 
tE (-2msinhmsr - m srcoshmrr) t r 4 r r c o s h  mrr 

r2 coshmrr t - m coshmrr t 2 
‘4 - 2msinhmrr 

where 
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Next 3 and 
written in  the following manner: 

are  substituted in  the equilibrium equation which is  

- 
E represents  the e r r o r  resulting f rom the fact that this  equation is not 
identically satisfied. 
Galerkin procedure in the following manner: 

The unknown constants a r e  determined by a 

JTE sin i 6 d{ = 0, i = 1’2, ... n. 
0 

The resulting equations for the A.’s then become: 
J 

n - 
- X B . . ) A ~  = o 

j 11 1J i, j both even or  odd, 

2 where 
a m  

2 
= sij - (bij - c . . )  - 1 

Bij  ’J arri 

3 2 3  
2 e 

gmjhmi - 2m dmj gmi t r r i  1 r I r m j  F m i  

2a m2 

1 t- c =- 1 1 t- amj= (m t j ) , b.. = - 2 2 2  1 
i j  i t j -1  i - j t l ’  i j  i t j t l  i- j-1 

, hmj = e  - m 2 d  1 1 - - - -  
m j  m j  Ja,j-1 J. gmj 

mJt  1 

(j t1I2 

m j t  1 

2 

kmj- l  a m j  mj-1 
= j (j-1I2 , -it w 

k m j t l  a a 
m j  

a 
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The minimum eigenvalue will be dependent on the number of 
circumferential  waves m a s  well a s  the parameters  of the problem 

a l  properties of the shell. The solutions of the eigenvalue problem were 
found by using an IBM 7090 digital computer. 

and a which a r e  the amplitude of the initial imperfection and the 

In all the calculations car r ied  out the parameter  containing the 
shell dimensions was fixed a t  the value corresponding to the experi-  
mental t es t  cylinders. This value of a was 1832. Both the even and 
odd problems were computed. The resul ts  of this calculation for five 
values of a l  < 0 a r e  shown in Figure 23. 
the perfect  shell corresponds to 1. 
correspond to the predominant t e r m  in the eigenvector. 

The classical  value fo r  
The numbers on the curves 

The absolute minimum eigenvalue over the whole range of the 
circumferential  wave number is easily found from these curves a s  
well a s  the corresponding circumferential  wave number. 
shape of this  minimum is seen to be the first mode. 

The mode 
This means that 

TX the buckling shape for al < 0 has  the form sin - in the axial L 
direction. The higher modes contribute only about a 2 per  cent 
correction to this pattern. 
var ies  f rom 6 to 8 a s  al  var ies  f rom -100 to 0. 

convergence of the eigenvalue problem was not obtained. 
c lass ical  buckling load corresponding to the value of 
established a s  a lower bound for a l l  values of a l )  0. 

shown in Figure 21. 

is much l e s s  than &at found in the t e s t s  the following comparison was 
made. 
approximately the same number of waves in the circumferential  direction 
a s  that found in  the tests. The comparison for ao< 0 i s  shown in 
F igure  24. 
t e r m  in the eigenfunction expansion, and those at  the ends of the curves 
to the number of circumferential  waves. It i s  seen that the decrease  in  
buckling s t r e s s  with increasing negative imperfection amplitude i s  l e s s  
a s  the circumferential  wave number increases.  
is also more  in line with the experimental results. 
more  axial waves a s  the number of circumferential  waves increases  and 
the amplitude of the waves at the center of the shell is greater  than the 
amplitude of the waves at the edges. Again, this  is nearer  the experi-  
mental  resul ts ,  

The number of circumferential  waves 

In the case  where the shell bows outward, meaning a l >  0, 
However, the 

= 2 was 

The variation of the theoretical  buckling load with a o / t  i s  

Since for a < 0 the reduction in buckling load given by the theory 

The value of the buckling s t r e s s  was found that corresponded to 

The numbers on the curves correspond to the predominant 

The buckling mode shape 
The eigenfunction has  

18 
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Fig. 1 - Mandrel and Finished W a x  F o r m  
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Fig .  3 - Testing Machine 

Fig.  4 - Load Measuring Cylinder 
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Fig. 7 - Initial Imperfection Measuring Equipment 
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